lunedì 30 aprile 2012

Blog di qualità

Un nuovo riconoscimento per il blog "didattica matematica scuola primaria".

siti
 

lunedì 23 aprile 2012

Dalle frazioni decimali ai numeri decimali: d, c, m - classe terza

Iniziamo l'attività considerando le frazioni decimali. Possiamo prendere avvio dall'esecuzione di una scheda che ci darà successivamente modo di considerare le frazioni scritte durante l'esercizio.
Fai clic per stampare la scheda.
Spieghiamo che le frazioni che al denominatore hanno 10, 100 e 1000 sono dette frazioni decimali.

1/10 = 1 : 10 l’intero è stato diviso in 10 parti
1/100 = 1 : 100 l’intero è stato diviso in 100 parti
1/1000 = 1 : 1000 l’intero è stato diviso in 1000 parti
Una volta che gli alunni sanno quali sono le frazioni decimali, possiamo procedere alla seconda fase dell'attività. Premetto alla descrizione di questo segmento di lavoro che tutte le immagini successivamente utilizzate si possono stampare facendo clic su questo link.

Br1 e Bass8 ci hanno mandato un loro disegno della città che stanno visitando attualmente. Eccolo:
Lo vogliamo colorare? Lasciamo che gli alunni colorino il disegno e lo incollino sul quadernone. Al termine evidenziamo come gli alunni abbiano colorato 1 disegno intero, quindi possiamo scrivere sotto che si tratta di 1 disegno.

Br1 e Bass8 però oggi ci vogliono aiutare ad imparare una cosa nuova e quindi non si sono mica accontentati di mandarci il disegno che abbiamo appena colorato, ce ne hanno inviato anche degli altri. Ecco, guardate questo disegno. Si tratta di un semplice puzzle.
Consegniamolo agli alunni, chiediamo cosa c’è di diverso rispetto al primo disegno. Si evidenzierà come il disegno sia diviso in 10 parti uguali. Facciamo ritagliare le varie parti, mescoliamole e poi proviamo a ricostruire con precisione il disegno originale e ad  incollarlo sul quadernone. Stavolta coloriamo non tutto il disegno, ma una sola parte.
Noi sappiamo già come indicare questa parte e quindi lo scriveremo sotto al disegno :
con le lettere un decimo
con una frazione decimale 1/10
A questo punto invitiamo gli alunni a riflettere. Si tratta di una frazione molto importante, noi infatti contiamo in base 10. Noi scriviamo i numeri interi usando decine, centinaia, migliaia a cui riserviamo un apposito posto nel numero ed una colonna sull’abaco. Bisognerà allora trovare un posto anche per il decimo, perché anch’esso fa parte della numerazione a base 10. Ma dove?

Prendiamo l’abaco, scriviamo sotto a ogni asta la marca corrispondente. Abbiamo sempre detto che occorrono 10 unità per formare 1 decina; 10 decine per formare 1 centinaio, 10 centinaia per formare 1 migliaio. Possiamo però anche dire che in 1 migliaio ci sono 10 centinaia, che in 1 centinaio ci sono 10 decine, che in 1 decina ci sono 10 unità.
Ora vediamo: che cosa significa 1/10? Secondo voi l’unità che cosa è della decina? E la decina del centinaio? E il centinaio del migliaio? Ma allora per rispettare questa sequenza dove dovremo mettere il decimo delle unità?
Ci verrà indicata la posizione a destra delle unità. Vediamo se è vero: se cambio una decina nella colonna delle unità devo mettere 10 unità, se cambio 1 unità in questa colonna che chiamiamo “dei decimi”, quanti ne devo mettere? Al contrario se nella colonna dei decimi ho 10 decimi, posso sostituirli con…. Molto bene!
Quindi anche ai decimi possiamo aggiungere la marca, che è d per non confonderla con da.

Rappresentiamo sul quaderno l’abaco.
Leggiamo questo numero: 1. Come? 1? Ma allora sono 1 unità? Come possiamo rimediare? Lasciamo provare fino ad introdurre la virgola per separare i decimi dalle unità intere. Il numero alla destra della virgola indica sempre dei decimi, cioè delle parti di unità; quindi scriviamo 0,1 e leggiamo 0 e 1 decimo. Possiamo quindi completare la scrittura precedente per esprimere la parte colorata:
con le lettere un decimo
con una frazione decimale 1/10
con il numero decimale 0,1
Se consideriamo due parti del disegno e poi successivamente le altre avremo:

1/10 – 2/10 – 3/10, ecc.
0,1 – 0,2 – 0,3.
Quanti d occorrono per formare un’unità intera?
Si possono a questo punto proporre alcune attività, da eseguire prima sempre collettivamente, per consolidare ed approfondire quanto appreso.
Ad esempio, scrivere numeri sotto forma di frazione e di numero decimale.

Spieghiamo anche, con opportuni esempi, come si possano scrivere quantità sotto forma di numero decimale.
Chiariamo bene agli alunni come i decimi siano parti di unità e posizioniamoli sulla linea dei numeri alla lavagna. Con l'aiuto della linea dei numeri facciamo eseguire numerazioni.

Proponiamo anche qualche esercizio di scomposizione.
---------------------------------------------------------------------------------------------
Vi ho detto che Br1 e Bass8 oggi vogliono stupirci. Ecco, guardate quest’altro disegno. Anche in questo caso si tratta di un puzzle.
Consegniamolo agli alunni, chiediamo cosa c’è di diverso rispetto al primo disegno. Si evidenzierà come il disegno sia diviso in 100 parti uguali. Facciamo incollare anche questo sul quadernone. Anche stavolta coloriamo non tutto il disegno, ma una sola parte.
Vediamo come possiamo indicare questa parte e quindi lo scriveremo sotto al disegno :

con le lettere un centesimo
con una frazione decimale 1/100
Anche stavolta fermiamoci a riflettere: il centesimo che abbiamo appena colorato che parte è del decimo? E del disegno intero? Quale sarà la sua posizione sull’abaco? Essendo 10 volte più piccolo del decimo metteremo i centesimi a destra dei decimi e li chiameremo c per non confonderli con le centinaia. Rappresentiamo sul quaderno l’abaco.
E quindi come lo indicheremo con i numeri decimali?

Abbiamo unità intere? Abbiamo un decimo intero? Abbiamo un centesimo intero? Quindi 0,01 che leggeremo 0 e 1 centesimo.
Possiamo quindi completare la scrittura precedente per esprimere la parte colorata:
con le lettere un centesimo
con una frazione decimale 1/100
con il numero decimale 0,01
Se consideriamo due parti del disegno e poi successivamente le altre avremo:

1/100 – 2/100 – 3/100, ecc
0,01 – 0,02 – 0,03, ecc 
Quanti c per formare un’unità intera? E per formare 1 d?
Anche per i centesimi proponiamo attività di consolidamento, sempre avendo cura di esemplificare prima alla lavagna attraverso esercizi collettivi.
- Ho 85 centesimi; quanti centesimi mancano per avere una unità?
- Se da un'unità tolgo 1 centesimo, quanti centesimi mi restano?
- Scrivi sotto forma di numero decimale: 27100, 4/100, 26/100, 8/100, 39/100, 100/100
- Scrivi sotto forma di numero decimale:
1 u, 2 d, 4 c =
1 u e 5 c =
4 d e 6 c =
3 da, 1 u, 2 d, 4 c =
2 da e 4 c =
1 h, 3 u, 5 c =
6 c =
34 c =


Ed ecco infine l’ultimo puzzle che ci hanno inviato Br1 e Bass8.
Consegniamolo agli alunni, chiediamo cosa c’è di diverso rispetto agli altri disegni. Si noterà come il disegno sia diviso in 1000 parti uguali. Facciamo incollare il disegno sul quadernone e coloriamone una sola parte.

Vediamo come possiamo indicare questa parte e quindi lo scriveremo sotto al disegno :
con le lettere un millesimo
con una frazione decimale 1/1000
Anche stavolta fermiamoci a riflettere: il millesimo che abbiamo appena colorato che parte è del centesimo? Del decimo? E del disegno intero?
Quale sarà la sua posizione sull’abaco? Essendo 10 volte più piccolo del centesimo metteremo i millesimi a destra dei centesimi e li chiameremo m.
Rappresentiamo l’abaco sul quaderno.

E quindi come lo indicheremo con i numeri decimali?
Abbiamo unità intere? Abbiamo un decimo intero? Abbiamo un centesimo intero? Abbiamo un millesimo intero? Quindi 0,001 che leggeremo 0 e 1 millesimo.
Possiamo quindi completare la scrittura precedente per esprimere la parte colorata:
con le lettere un millesimo
con una frazione decimale 1/1000
con il numero decimale 0,001

Se consideriamo due parti del disegno e poi successivamente le altre avremo:
1/1000 – 2/1000 – 3/1000
0,001 – 0,002 – 0,003.
Quanti m per formare un’unità intera? E per formare 1 c? E per formare 1 d? Osserviamo quindi come i numeri decimali siano formati da una parte intera e da una parte decimale, separate dalla virgola. Fai clic per stampare la casa dei decimali.
Un altro esercizio.
 Una scheda

Un test/gioco on line per i tuoi alunni
Una verifica scritta da stampare

Ulteriori risorse dal Web
Vedi U. A. di riferimento

martedì 17 aprile 2012

Divisioni per 10, 100 e 1000 - classe terza

Affronteremo l'argomento limitandoci per ora ai casi di numeri in cui sia possibile togliere gli zeri, lasciando gli altri casi a quando avremo affrontato i numeri decimali.
Bruno e Bassotto sono sempre nella grande città, stupiti dalla quantità di vie di comunicazione presenti: strade, autostrade, ferrovie, metro, ecc. Oggi si sono recati vicino all’autostrada ed assistono al transito di numerosi mezzi al casello del pedaggio autostradale. Naturalmente i due ne approfittano per fare qualche calcolo. Ci sono 30 auto incolonnate in parti uguali a 10 caselli. Quante auto per ogni casello?
Naturalmente sappiamo già il risultato: 30 : 10 = 3 perché 3 x 10 = 30.
Registriamo anche sul quaderno usando la tabella.

Osserviamo che la cifra 3 si sposta di un posto verso destra.
Proviamo a fare la stessa cosa con un'altra divisione. Osserviamo che anche in quest'altro caso accade la medesima cosa.
Proviamo ora a rappresentare in tabella altre divisioni per 100 e per 1000. Che cosa notiamo?


Possiamo concludere che quando si divide per 10, 100 e 1000, le cifre diminuiscono il loro valore spostandosi a destra di 1, 2, 3 posizioni.
In altre parole, se è possibile, dividendo per 10, 100 e 1000 si dovranno togliere rispettivamente 1, 2, 3 zeri.
Proponiamo un esercizio

 Ecco anche una scheda con tabelle e macchine da completare. Fai clic per stampare la scheda.

venerdì 13 aprile 2012

Frazioni di quantità discontinue e calcolo della parte frazionaria - classe terza

Abbiamo visto le frazioni di quantità continue, ma le frazioni sono anche usate per indicare parti di quantità discontinue. Proviamo ad esempio a considerare ½ della classe per l’effettuazione di un gioco in palestra, dovremo dividere la classe in 2 sottoinsiemi equipotenti e poi considerarne uno. Prendiamo ora ¾  dei 24 pennarelli che sono in questa scatola, dobbiamo dividere i 24 pennarelli in 4 sottoinsiemi equipotenti e poi considerare 3 dei sottoinsiemi così formati. Dopo alcuni esempi a livello manipolativo operiamo solo su insiemi rappresentati.

Dobbiamo ora scoprire la regola per calcolare la parte frazionaria di un numero.

Cominciamo considerando le unità frazionarie.
Br1 e Bass8, come sappiamo, sono in una metropoli, attratti dalle possibilità che questa offre. Ad esempio, la grande città offre molte possibilità di passare il tempo libero dedicandosi ad attività ricreative, culturali, sportive.
Infatti i due, giorni fa, sono entrati in un museo per ammirare i dipinti qui esposti. In una grande sala che contiene 28 quadri, i nostri due amici ne hanno già visti 1/7. Quanti quadri hanno visto?
Proviamo ancora con il disegno, riallacciandoci così all'attività precedente e poi vediamo invece come dovremmo operare per calcolare il risultato senza l'aiuto del disegno: dovremo dividere i 28 quadri in 7 parti uguali e considerare una di queste parti. Con i numeri:
28 : 7 = 4 valore di 1/7



Vediamo alcuni altri esempi insieme e poi con lavoro individuale.
Dopo aver visto come calcolare le unità frazionarie, estendiamo il discorso al calcolo delle parti frazionarie.
Successivamente alla visita del museo, i nostri due amici sono entrati in una palestra, dove sono stati immediatamente presi in consegna da un arcigno istruttore che li ha fatti subito salire sulla cyclette e pedalare per 15 minuti. Dopo ciò, i nostri sono stati messi a fare degli esercizi per gli addominali. Dovevano fare 30 esercizi, ma giunto ai 4/6 Bassotto è crollato stremato. Quanti sono gli esercizi che Bassotto è riuscito a fare? Lasciamo provare ed operare gli alunni nel tentativo di giungere alla risposta. Se gli interventi degli alunni prendono strade, per così dire, indesiderate, facciamo notare che sappiamo già come il denominatore 6 indichi in quante parti va diviso l’intero. Tutti gli esercizi dovevano essere 30, 30 : 6 = 5 che è il valore di una delle parti ottenute; il numeratore 4 indica quante parti devo considerare, quindi 5 x 4 = 20.
Sintetizziamo con i numeri: 30 : 6 = 5 5 x 4 = 20
Bè, non è proprio in grande forma Bassotto, è riuscito a compiere solo 20 esercizi per gli addominali. 
Finito questo, i nostri due eroi, già ansimanti, sono stati messi sul tapis roulant e l’istruttore ha impostato un programma di 20 minuti. Stavolta è stato Br1 ad arrendersi dopo aver corso i ¾ dei minuti previsti. Per quanti minuti è riuscito a correre Br1?
Vediamo collettivamente ancora un caso:
Durante la prossima gita scolastica per l’ingresso a Cowboyland la nostra classe deve pagare € 450. Dobbiamo però versare come caparra i 3/10. Quanto dobbiamo versare? 

Possiamo ora proporre esercitazioni individuali.
“Elias ha letto i ¾ delle pagine di un libro di avventura di 260 pagine. Quante pagine ha letto?”.

“Un negoziante ha comprato 135 uova. Durante il trasporto ne ha rotte 1/5. Quante sono le uova rotte?”
Possiamo proporre anche una scheda come questa. Fai clic per stamparla.



Un test/gioco on line per i tuoi alunni
Una verifica scritta da stampare
Ulteriori risorse dal Web 
Vedi U. A. di riferimento

mercoledì 4 aprile 2012

Divisioni in colonna (parte 2) - classe terza

Proseguiamo il lavoro sulle divisioni in colonna, iniziato e descritto nel post precedente, dove abbiamo affrontato tutti i casi delle divisioni con due cifre al dividendo ed una cifra al divisore. Ormai gli alunni dovrebbero aver acquisito, in grande maggioranza, la padronanza delle sequenze operative per eseguire correttamente le divisioni in colonna: si tratta quindi ora semplicemente di sfruttare queste capacità per affrontare divisioni con numeri maggiori. Molto importante è comunque continuare a dedicare particolare attenzione a quegli alunni ancora in difficoltà, chiamandoli spesso alla lavagna ed offrendo loro situazioni molto graduali da affrontare.
La difficoltà successiva e quindi l'attività di oggi riguarda le divisioni con tre cifre al dividendo ed una cifra al divisore, considerando inizialmente una sola cifra del dividendo.
Partiamo anche stavolta da una situazione problematica.
La scuola ha acquistato 4 piccole stampanti spendendo in totale € 574. Qual è il costo di ogni stampante?
Eseguiamo concretamente con i regoli e parallelamente all'attività concreta eseguiamo l’operazione con i simboli.
Eseguiamo poi insieme operazioni con difficoltà analoghe: 990: 9 (senza resti parziali e totali) - 628 : 4 (esatta ma con resti parziali) - 458 : 3 (con resto) - 736 : 7 (con resto e con seconda cifra del quoziente uguale a zero).
Procediamo quindi al lavoro individuale.

Per scoprire la soluzione dell’indovinello, esegui le operazioni in colonna e trascrivi le lettere corrispondenti ai risultati.
Che cosa ci fa un'ape al bar?
930 : 3 =  E
648 : 3 = O
884 : 4 = A
573 : 5 = I
912 : 7 = V
537 : 2 = I
738 : 4 = P
649 : 5 = T
625 : 6 = R




Appurato che gli alunni agiscano con sicurezza a questo livello di difficoltà, si potrà procedere alla fase successiva del lavoro che prevede divisioni con tre cifre al dividendo, in cui occorre però considerare le prime due cifre.
Ad esempio dobbiamo eseguire 105 : 4
Eseguiamo concretamente con i regoli in modo da evidenziare il cambio da centinaia a decine e, conseguentemente, la necessità di considerare le prime due cifre del dividendo, vista l’impossibilità di dividere un piatto del multibase per 4.

Eseguiamo poi l’operazione con i simboli.


Eseguiamo sempre insieme alla lavagna operazioni dello stesso tipo: 218 : 7 - 239 : 4 - 587 : 8 e poi procediamo al lavoro individuale.

 
Possiamo, a questo punto, affrontare l'ultima difficoltà che consiste in divisioni con il dividendo di 4 cifre. Ormai gli alunni dovrebbero padroneggiare la tecnica, per cui possiamo procedere ad esemplificazioni collettive alla lavagna avendo cura di affrontare casi in cui occorre considerare una o due cifre del dividendo: 3 718 : 9 - 2 036 : 6 - 3 242 : 6 - 1 215 : 5
Se appuriamo che gli alunni riescono senza eccessive difficoltà a risolvere questo tipo di divisioni, proponiamo calcoli da eseguire a livello individuale.


Un test/gioco on line per i tuoi alunni
Una verifica scritta da stampare
Ulteriori risorse dal Web
Vedi U. A. di riferimento


lunedì 2 aprile 2012

Frazioni di quantità continue - classe terza

Eccoci giunti agli argomenti della sesta U. A. "La città".
Anche stavolta rendiamo partecipi gli alunni dei traguardi da raggiungere al completamento dell'unità di apprendimento ed elenchiamoli siul quaderno.
Al termine del sesto percorso "La città" dovrai aver imparato a:

• Conoscere ed usare le frazioni
• Conoscere ed usare i numeri decimali
• Conoscere ed usare i sottomultipli dell’euro
• Conoscere ed usare le misure di capacità
• Risolvere problemi sul S.M.D.


Iniziamo le attività didattiche sulle frazioni considerando in un primo tempo il frazionamento di quantità continue.
Partiamo da una situazione concreta: ho un foglio da distribuire in parti uguali a 3 alunni. Come fare?

Non sempre abbiamo bisogno di un oggetto intero, a volte abbiamo bisogno di parti di oggetti. E, a questo, proposito, è importante far capire agli alunni la differenza fra spezzare e frazionare.
Io posso spezzare una quantità intera in parti disuguali (ad es. mi cade a terra un piatto).
Se da una torta taglio una fettina, l’ho divisa in due parti disuguali oppure posso dividere la stessa torta in 4-6-8 parti uguali. Quando io divido un intero in parti esattamente uguali  dico che “fraziono”, che vuol dire dividere in parti uguali. Facciamo molti esempi concreti con frutti, cartoline, fogli, cartoncini, mostrando la differenza fra spezzare e frazionare.

Br1 e Bass8 sono abilissimi nel frazionare, infatti nella loro Galassia li chiamano Super Frazionatori.

Ora, si da il caso che, essendo ormai da molto tempo nella fattoria di Ambrogio, i due hanno approfittato di un giorno di ferie per andare a visitare una delle grandi città che costellano la pianura. E non vi dico la loro sorpresa nel trovarsi in una grande metropoli. Come prima cosa sono entrati in un grande supermercato e Bass8 si è diretto subito verso i banchi della frutta, attratto dalla bellezza delle mele qui presenti. Ignaro di come funzionano le cose nei nostri negozi, Bass8 prende una mela tra le mani e si chiede “Sarà più buona di quelle che coltiviamo noi per Ambrogio? Quasi quasi l’assaggio!” Detto, fatto, prende un coltellino e la divide in un istante in 4 parti perfettamente uguali. Ecco, fa così (prendiamo una mela ed imitiamo Bass8). Afferra una delle quattro parti e sta per portarla alla bocca, quando arriva un commesso incollerito che gli urla “Posi subito quella mela. Lei si è preso una mela!”. E Bass8, calmissimo: “ Guardi che non è vero, io non ho in mano una mela!” Il commesso: “Ah, no, eh! E quella cos’è, non è una mela?” “No, non è una mela!” risponde serafico il nostro amico.


Chi ha ragione, secondo voi e perché? Ascoltiamo cosa hanno da dire gli alunni, che, probabilmente, non si soffermeranno sull’aspetto matematico della faccenda. E allora li inviteremo noi a riflettere.
Come ha fatto Bass8 abbiamo già frazionato in 4 parti uguali la mela, ora prendiamo una delle parti ottenute, chiamiamo un alunno e diciamogli di scrivere con un numero la quantità che ho in mano.

Facciamo riflettere: posso scrivere 1? No, perché non è la mela intera. E’ stato stabilito un modo particolare di scrivere questo numero, perché per sapere quale parte di mela ho in mano devo sapere in quante parti è stata divisa e quante parti ho preso. Allora traccio una lineetta che significa che ho frazionato un intero, sotto scrivo il numero delle parti in cui ho frazionato l’intero e sopra la parte che ho in mano: leggo un quarto.





Prendiamo ora 2 parti della mela, poi 3 e 4 e chiediamo di scrivere la frazione corrispondente. Allora chi aveva ragione? Aveva ragione il commesso perché non si possono usare le merci esposte, ma aveva anche ragione Bassotto perché non aveva in mano una mela, ma ¼.
 

Frazioniamo altri oggetti in modi diversi ed ogni volta chiediamo qual è e come si scrive la frazione che rappresenta la parte che consideriamo.
Consegniamo ad ogni alunno un foglio intero, dividiamo a metà, a metà della metà, in ottavi.

Facciamo usare anche i regoli: prendiamo il regolo arancione. Quale regolo è ½ del regolo arancione? Quale regolo è 1/3 del blu? Quale è ¼ del marrone, quale è 1/6 del verde scuro?
Proponiamo ora un lavoro su scheda. Fai clic per stampare la scheda.




Prepariamo 9 dischetti di carta o cartoncino, già predisposti per essere suddivisi in parti uguali. Prendiamo il primo dischetto di carta, lo frazioniamo in 2 parti e ne prendiamo in mano una, chiamiamo un alunno e diciamo di scrivere con una frazione la quantità che consideriamo. Procediamo al medesimo lavoro anche con gli altri dischetti, frazionandoli in 3, 4, 5, ecc parti uguali. Se vuoi stampare i dischetti fai clic qui.

Parallelamente procediamo sul quaderno usando una scheda apposita, come questa.

Fai clic per stampare la scheda per l’esercizio degli alunni. Al termine osserviamo che le frazioni ½, 1/3, ¼, 1/5, ecc sono unità frazionarie perché indicano una sola delle parti ottenute frazionando un intero e che più aumenta la cifra del denominatore più diminuisce la parte considerata: ½ >1/3 >¼ > 1/5 > 1/10.
Proponiamo esercizi di confronto e di ordinamento di unità frazionarie.



Una lezione per Lim sulle frazioni di quantità continue
Un test/gioco on line per i tuoi alunni
Una verifica scritta da stampare 
Ulteriori risorse dal Web